Universidad Nacional de Ingeniería Facultad de Ciencias Sección de Posgrado y Segunda Especialización

Calibración del Detector Minerva mediante la detección de Muones

Hurtado Anampa, Kenyi

Asesor: C. Javier Solano S.

10 de Diciembre, 2009

Estructura de la Presentación

Parte 1: Fisica de Neutrinos

Características de los Neutrinos Oscilaciones de Neutrinos Interacciones de Neutrinos con la materia

Parte 3: Detector Prototipo

Introducción Electrónica de Adq. Datos Análisis de Crosstalk, estabilidad de Mediciones , filtraciones de luz Cálculo de Ganancias Búsqueda de Muones FilterEvent Software VISTA Parte 2: MINERvA

Introducción Fuente de Neutrinos (NUMI) Motivación Mundo Real y MC

Parte 4

Conclusiones

Fisica de Neutrinos

Características de los Neutrinos

Son partículas neutras, de spin ½ y masa muy pequeña Tienen una sección eficaz muy pequeña (interactúan solo vía interacción débil)

Existen 3 "sabores" de neutrinos, cada una asociada a su correspondiente sabor de leptón cargado

¡Se requieren detectores altamente sensibles y haces muy intensos para detectarlos!

Pueden cambiar de "sabor" (oscilacion de neutrinos) Fisica de Neutrinos

Oscilaciones de Neutrinos

Los neutrinos no tienen carga e interactúan mediante interacciones débiles, pero podemos conocer su "sabor", a través de su leptón cargado asociado.

Mediante una Matriz Unitaria de mezcla *U*, es posible relacionar los autoestados de sabor $|v_{\alpha}\rangle$, con los de masa $|v_{i}\rangle$

$$\nu_{i_L}(x) = U_{i\alpha}^L \nu_{\alpha_L}(x)$$
$$\nu_{i_R}(x) = U_{i\alpha}^R \nu_{\alpha_R}(x)$$

Fisica de Neutrinos Interacciones de los neutrinos con la materia

Estructura de la Presentación

Parte 1: Fisica de Neutrinos

Características de los Neutrinos Oscilaciones de Neutrinos Interacciones de Neutrinos con la materia

Parte 3: Detector Prototipo

Introducción Electrónica de Adq. Datos Análisis de Crosstalk, estabilidad de Mediciones , filtraciones de luz Cálculo de Ganancias Búsqueda de Muones FilterEvent Software VISTA Parte 2: MINERvA

Introducción Fuente de Neutrinos (NUMI) Motivación Mundo Real y MC

Parte 4

Conclusiones

MINERvA

MINERvA Introducción

MINERvA apunta a ser un detector de alta resolución, que utilizará un haz intenso de neutrinos (NuMI) en el FERMILAB (IL, EEUU), para estudiar reacciones de neutrinos con la materia a algunos GeV.

La colaboración cuenta con más de 20 instituciones de todas partes del mundo.

MINERVA Fuente de neutrinos: NUMI (Neutrinos at the Main Injector)

Los protones colisionan con el blanco de grafito, produciendo piones

Los piones decaen en muones y neutrinos muónicos

Los muones son absorvidos, quedando solo los neutrinos

MINERvA

Motivación

Antes de MINERvA

MINERvA reducirá las incertidumbres de medidas existentes obtenidas por varios experimentos.

> Después de MINERvA (solo errores estadísticos)

MINERvA

MINERvA Motivación

Proceso	Actual	Después de MINERvA
QE	20%	5%
Res	40%	5/10% (CC/NC)
DIS	20%	5%
Coh	100%	20%

Incertidumbres estimadas de las secciones eficaces

MINERvA Mundo Real y MC

MINERvA

MINERvA Mundo MC

Ejemplo de una simulación de eventos en MINERvA

MINERvA Mundo MC

Ejemplo de una simulación de eventos en MINERvA

Estructura de la Presentación

Parte 1: Fisica de Neutrinos

Características de los Neutrinos Oscilaciones de Neutrinos Interacciones de Neutrinos con la materia

Parte 3: Detector Prototipo

Introducción Electrónica de Adq. Datos Análisis de Crosstalk, estabilidad de Mediciones , filtraciones de luz Cálculo de Ganancias Búsqueda de Muones FilterEvent Software VISTA Parte 2: MINERvA

Introducción Fuente de Neutrinos (NUMI) Motivación Mundo Real y MC

Parte 4

Conclusiones

Detector Prototipo en MINERvA (Tracking Prototype Detector)

Introducción

El detector prototipo de rastreo (TP) es el 20 % del detector completo MINERvA , conteniendo calorimetría y parte del detector central.

PMTs

Centelleadores

Calorimetros

Detector Prototipo en MINERvA

Introducción

El objetivo es mostrar el rendimiento para el rastreo de partículas de rayos cósmicos, además permite verificar la operación y funcionamiento del detector antes del montaje final para el detector completo

Esquema del Proyecto TP (Hardware) Introducción

Electrónica de Adquisición Tubos fotomultiplicadores

Se utilizan tubos fotomultiplicadores Hamamatsu M64, los cuales son un arreglo de 64 pixels en grupos de 8x8

Tubos Fotomultiplicadores Hamamatsu R7600U-00-M64

Sensor multi-ánodo de 64 pixels

Detector Prototipo Electrónica Adquisición de Datos Esquema

Análisis de Crosstalk en los PMT/FEBs

Iluminación de una sola fibra

Parámetros del sistema de inyección de luz

Definiremos crosstalk como el proceso en el cual un píxel del PMT produce una salida medible cuando otro(s) píxel es/son iluminado(s).

Light Injector and PMT30/FEB331

Sistemas de inyeción de luz y PMT Box

Análisis de Crosstalk en los PMT

ayudan a detectar la intensidad de crosstalk electrónico en pixels vecinos para cada PMT/FEB

Coencientes (×10)		
2.59	6.37	3.2
1.71	Pixel 46	15.6
3.29	5.85	1.96

21

Análisis de Crosstalk en los PMT

Coecientes de Crosstalk Eléctrico con pixel 46 iluminado

$$C_{ij} = \frac{Q_{j,i} - Q_i}{M_j - Q_j}$$

- $Q_{j,i}$ es la media del Pedestal del píxel i cuando el píxel j es iluminado.
- Q_i es la media del Pedestal del píxel i durante una corrida de pedestal
- Q_j es la media del Pedestal del píxel j durante una corrida de pedestal
- M_j es la media de la distribución del píxel j cuando es iluminado

Análisis de Crosstalk en los PMT

Estabilidad de lectura de los PMTs/FEBs

Análisis de Linealidad

Éste estudio sirve para:

Verificar si hay cambios drásticos en las medidas debido a factores externos en el laboratorio. Ver la estabilidad de las mediciones cuando se inyecta una cantidad fija de luz a los PMTs Comprobar la estabilidad del software de adquisición de datos (DAQ software) bajo períodos largos de toma de datos.

Estabilidad de lectura de los PMTs/FEBs

Estabilidad de lectura de los PMTs/FEBs

Lecturas de Medidas Pedestales (una corrida por hora)

Menos 0.7% de variación respecto a la media promedio

Estabilidad de lectura de los PMTs/FEBs

Lecturas de Medidas MaxPE (una corrida por hora)

Menos 1.5% de variación respecto a la media promedio

27

Estudio de filtraciones de luz en los tubos fotomultiplicadores

Lectura Pedestal Normal

Lecturas con Filtración de Luz

Estudio de filtraciones de luz en los tubos fotomultiplicadores

Utilizando los discriminadores de los FEB

Chain vs Board: Número de Hits por PMT Box

Número de hits por pixel en un discriminador

Cálculo de Ganancia de los Tubos Fotomultiplicadores

Supresión de pedestales

Cálculo de Ganancia de los Tubos Fotomultiplicadores

Distribución de carga calibrada (de ADC Counts a fC)

Ajuste Tri-Lineal

Cálculo de Ganancia de los Tubos Fotomultiplicadores

$$pe = 1.2 \frac{(Mean_{MaxPE} - Mean_{ped})^2}{RMS_{maxPE}^2 - RMS_{ped}^2}$$
$$gain = \frac{Mean_{maxPE} - Mean_{ped}}{pe}$$

Método de cálculo de intensidad de luz (PE) y ganancia de los PMT

Los datos de ganancia se almacenan en una base de datos y se utiliza en la calibración

Búsqueda de Muones usando los IDDigits

El detector Prototipo

Búsqueda de Muones usando los IDDigits

×10

40

20

Básicamente se buscan eventos con un rango de aproximado 30 a 100 más hits en ellos Ésto es debido a que se desean excluir eventos de pocos hits y cuya suma total de energía sea muy baja

200

250

300

n rawhits

Sum\$(pe raw[]):n rawhits

100

150

Búsqueda de Muones usando los IDDigits

Algunas trayectorias de muones a partir de los IDDigits usando ROOT

Trayectorias de muones en ROOT

Trayectorias de muones a partir de los IDDigits usando ROOT³⁶

FilterEvent Software

Histograma mostrando el número de eventos con muones encontrados en³⁸ una corrida

VISTA Visualización de IDDigits

2 trayectorias de muones en el Tracking Prototype

VISTA Múltiples Vistas X,U,V

Mediante OnX, se creo codigo para implementar diferentes vistas por proyección en los planos para la visualización de los IDDigits ⁴⁰ en VISTA

VISTA Cortes de Energia

Opción de cortes por energía depositada en las partes sensitivas del Detector

VISTA Cortes de Energia

Visualización de IDDigits en VISTA con y sin cortes

Python en VISTA

appMgr = gaudimodule.AppMgr(outputlevel=3,joboptions="\$VISTAROOT/options/MyVista.opts")

evt=appMgr.evtSvc()

appMgr.run(4)

for part in evt['Raw/ID/Digits']:

print part.pe()

from ROOT import TH1F

```
h = TH1D('h','Momentum of MCParticles',600,0,300)
```

for n in range(10): appMgr.run(4) for part in evt['MC/Particles']: h.Fill(part.pe())

h.Draw()

Capturas de presentación en vivo de VISTA

Visualización de un Evento MC en VISTA

Capturas de presentación en vivo de VISTA

Filtrado de energía para la visualización de una trayectoria de muones

Estructura de la Presentación

Parte 1: Fisica de Neutrinos

Características de los Neutrinos Oscilaciones de Neutrinos Interacciones de Neutrinos con la materia

Parte 3: Detector Prototipo

Introducción Electrónica de Adq. Datos Análisis de Crosstalk, estabilidad de Mediciones , filtraciones de luz Cálculo de Ganancias Búsqueda de Muones FilterEvent Software VISTA Parte 2: MINERvA

Introducción Fuente de Neutrinos (NUMI) Motivación Mundo Real y MC

Parte 4

Conclusiones

Conclusiones

Todo este trabajo ha servido para:

Construir un número signicativo de los módulos del detector MINERvA.

Calibrar y mostrar su rendimiento para el rastreo de partículas de rayos cósmicos

Vericar la operación y funcionamiento del detector antes del montaje final para el detector completo, entre ellos, pruebas de hardware, PMTs, y estabilidad del software de adquisición de datos.

Conclusiones

Se trabajó con el framework GAUDI en MINERvA, el cual provee un punto común de referencia para el desarrollo de aplicaciones, además de permitir la reutilización e intercambio de componentes de software individuales.

El desarrollo del paquete FilterEvent, con un algoritmo básico de detección de eventos con muones, permitiendo depurar la parte de mapeado del software

El Detector Prototipo fue terminado el 10/03/09

El *Tracking Prototype* finalizó cumpliendo sus objetivos, testeando rigurosa y exitosamente el software y hardware del detector MINERvA y detectando rayos cósmicos satisfactoriamente

