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RESUMO 
 
 O sistema atmosférico é regido pela interação de muitos parâmetros meteorológicos causando 
dependência entre eles, ou seja, umidade e temperatura, ambos adequados diante de qualquer anomalia, 
como tempestades, furacões, eventos El Niño Oscilação Sul (ENSO). Portanto, entender perturbações da 
variação de umidade ao longo do tempo pode fornecer um indicador de qualquer fenômeno oceanográfico. Os 
dados anuais de umidade relativa ao redor da linha Equatorial do Oceano Pacífico foram processados e 
analisados para compreender a evolução temporal de cada conjunto de dados, apreciar anomalias, tendências, 
histogramas e propor uma maneira de prever episódios anômalos como eventos ENSO, observando 
anormalidade dos coeficientes de correlação de lag entre cada par de boias. Os conjuntos de dados foram 
retirados do projeto Rede Transoceânica de Oceano / Triângulo de Atmosfera Tropical (TAO / TRITON), matriz 
dirigida pelo Pacific Environmental Laboratory (PMEL) da Administração Nacional Oceânica e Atmosférica 
(NOAA) e pela Agência Japonesa de Ciências da Terra-Marinha e Tecnologia (JAMSTEC). Todos os conjuntos 
de dados foram processados e o código foi elaborado pelo autor ou adaptado da Mathworks Inc. Mesmo 
ocorrências de umidade relativa no lado leste do Oceano Pacífico parecem oscilar harmonicamente, enquanto 
ocorrências no lado oeste não, devido ao tamanho de suas amplitudes de oscilações. Esse fato pode ser 
observado nos histogramas que mostraram formas de pico no lado leste do oceano e gaussianos no oeste; As 
funções de correlação de defasagem mostraram que nenhum par de boias sincroniza flutuações, mas as boias 
ocidentais são afetadas diante dos eventos do ENSO, especialmente entre 1997-98. Definitivamente, as 
correlações de atraso nas boias ocidentais são determinantes para detectar eventos ENSO. 
 
Palavras-chave: Correlação Lag, eventos ENSO, Função de Distribuição Discreta, Umidade Relativa, 
Processo de Dados.  
 
ABSTRACT  
 

The atmosphere system is ruled by the interaction of many meteorological parameters, causing a 
dependency between them, i.e., moisture and temperature, both suitable in front of any anomaly, such as 
storms, hurricanes, El Niño-Southern Oscillation (ENSO) events. So, understanding perturbations of the 
variation of moistness along the time may provide an indicator of any oceanographic phenomenon. Annual 
relative humidity data around the Equatorial line of the Pacific Ocean were processed and analyzed to 
comprehend the time evolution of each dataset, appreciate anomalies, trends, histograms, and propose a way 
to predict anomalous episodes such ENSO events, observing abnormality of lag correlation coefficients 
between every pair of buoys. Datasets were taken from the Tropical Atmosphere Ocean / Triangle Trans-Ocean 
Network (TAO/TRITON) project, array directed by Pacific Environmental Laboratory (PMEL) of the National 
Oceanic and Atmospheric Administration (NOAA), and the Japan Agency for Marine-Earth Science and 
Technology (JAMSTEC). All the datasets were processed, and the code was elaborated by the author or 
adapted from Mathworks Inc. Even occurrences of relative humidity in the east side of the Pacific Ocean seem 
to oscillate harmonically, while occurrences in the west side, do not, because of the size of their amplitudes of 
oscillations. This fact can be seen in the histograms that show Peak shapes in the east side of the ocean, and 
Gaussians in the west; lag correlation functions show that no one pair of buoys synchronize fluctuations, but 
western buoys are affected in front of ENSO events, especially between 1997-98. Definitely, lag correlations in 
western buoys are determined to detect ENSO events. 
 
Keywords: Lag correlation, ENSO events, Discrete Distribution Function, Relative Humidity, Data process. 
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1. INTRODUCTION  
 
 The atmosphere is thermodynamic 
permeable container plenty of gases (air), with a 
shape of a sphere that envelops the Earth. 
Continuously, these gases are going from one 
place to another inside this container in any 
direction, forming hurricanes (Uccellini and Ten 
Hoeve, 2019), storms (Gomez, Carter, Trustrum, 
Page, and Orpin, 2013), or just moving as winds 
(Xu et al., 2019), absorbing or detaching vapor 
water from their environment (Behar, Sbarbaro, 
Marzo, and Moran, 2019), reason why this gas, 
might be structured into two kinds, wet and dry, 
which percentage depends on many 
meteorological parameters (Xu, Huang, Zhang, 
and Li, 2018). Vapor water (Lawrence, 2016) may 
be formed upon sea surface because of the 
refracted radiations (Maksin et al., 2018), 
evaporations of surface waters (Kolehmainen et 
al., 2017), turbulence (Cuxart, and Jiménez, 
2006), or because of rain (Chakraborty, Talukdar, 
Saha, Jana, and Maitra, 2017), among others.  

Nevertheless, vapor water is affected by 
solar radiation (Riavo et al., 2016), dust 
concentration (Csavina, Field, Félix, Corral-Avitia, 
Sáez, and Betterton, 2014), biological processes 

Osimani, Aquilanti, and Clementi, 2019), 
temperature (Njau, 1994).  

All these happenings criticize the amount 
of moisture presented in the air, affecting not only 
the natural environment, such as ships or 
embarkations travelling around, that may contain 
subtle merchandise such foods, electronic 
equipment, or the equipment of the embarkations 
themselves (Ju, Zhao, Mujumdar, Fang, Gao, 
Zheng, and Xiao, 2018, and Testaa, Maranob, 
Ambrogib, Boracchib, Casulac, Biganzolib, and 
Moroni, 2017); their crew (Buonocore, De Vecchi, 
Scalco, and Lamberts, 2018); or the skin 
(Klaassen, Schipper, and Masen, 2016).  

But winds may displace these vapors to 
adjoining areas affecting contiguous populations 
(Lima, Ha Ahna, and Hwan Jeongb, 2018), 
animals (Xiong, Meng, Gao, Tang, Zhang, 2017), 
climates (Sahin & Cigizoglu, 2012), systems 
(Gehan, Sallam, and Elsayed, 2015), or things 
(Zhan, Wang, Cao, L. Li, and C. Li, 2010), 
provoking phenomena (A.K. Singha, H. Singha, 
Singhb, and Sawhneyb, 2002), change 
concentration of gases in the atmosphere (Gubb, 
Blanusa, Griffiths, and Pfrang, 2018).   

 As have been seen, quantification of 
relative humidity, which is derived from 

environmental temperatures (Lin and Hubberd, 
2003), is very important, due to its atmosphere-
ocean interaction side effect, and also may be a 
useful parameter for forecasting (Ruano, Ferreira, 
and Mendes, 2010), hydro-climate studies (Lee, 
Zhan, and Pei, 2015), determine the consumption 
of energy in buildings (Mba, Meukam, Kemajou, 
2016). 

 This project processed the relative 
humidity data from PMEL-NOAA (PMEL-NOAA) 
network to analyze particularities in time, a 
proposal that will be sustainable observing 
anomalies in the time series of each dataset, 
analyzing their trends, kind of oscillations (Yang, 
2019), amplitudes. Discrete distribution functions 
to understand frequencies of occurrences and 
basic statistics. Finally, lag correlation functions, 
(Zebende, Brito, Silva, and Castro, 2018), 
between every pair of buoys of the grid to see 
trends between each couple. A small change in 
the lags of relative humidity (Rhee, Im, Kim, and 
Song, 2019) may be an important change in the 
atmosphere of the datasets (Ross et al, 2018), 
because of the repercussions in the adjacent 
areas (Sloane and Wolff, 1985), or any adjacent 
areas may influence in the ocean (Seidov et al., 
2015). Relative humidity in this grid tends to be 
null in each dataset, discarding the options of 
covariance of any two datasets, and open 
another option, such parabolic relationship (El 
Massoud, 2005), or any chaotic system (McNeal, 
Petcovic, Bals-Elsholz, and Ellis, 2019).  

  
2. MATERIALS AND METHODS  
 
2.1. Data 

This investigation pretended to examine 
the evolution in time of Relative Humidity in the 
Pacific Ocean, (Liua, Hana, Lia, Tianc, and Liud, 
2018), trends (Bettio, 2008), normalized discrete 
distribution functions, and interprets interactions 
of Relative Humidity along the Equatorial Line in 
the Pacific Ocean. Reason why, annual data of 
relative humidity at 3 meters of altitude, between 
137º E and 95º W meridians, and between 9º N 
and 8º S latitudes of sixty-nine buoys since 1980 
(see figure 1), were handled from the Tropical 
Atmosphere Ocean / Triangle TransOcean 
Network (TAO/TRITO) project of the Pacific 
Marine Environment Laboratory (PMEL), directed 
by the National Oceanic and Atmospheric 
Administration (NOAA) around the equatorial line 
of the Pacific Ocean.  
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Figure 1. Location of the grid of Relative 

humidity located at the TAO/TRITON Project, in 
the Equatorial line of the Pacific Ocean of PMEL-
NOAA. Adapted from MatLab (Mathworks Inc.). 
 
2.2. Anomalies in Relative Humidity 

 
 The first arrangement was the analysis of 

sequential data, applied to time data collected 
from the whole moored instruments for the 
TAO//TRITON project, through their time series 
and their anomalies (Emery & Thomson, 2007), 
organized by latitudes and longitudes (Dare and 
Ebert, 2017). The trends and amplitudes vary 
along the time and may be an indicator in front of 
ENSO events, (Ambrosino, Thinová, Briestensky, 
and Sabbarese, 2019).  
 
2.3. Statistical model 

 
The second process applied to these data 

was the normalization of discrete relative 
distribution functions, (Cook, 2015) of the 
frequencies of occurrences of Relative Humidity, 
(Zhu L., Li, Y. & Jiang, Z., 2017). Considering a 
bin of one unit of size, for each dataset of the 

values, nj

elements (bins) of a partition of the range of 
allowed values of the dataset , (Pruneau, 2017) 
as indicated in Eq. 1, appreciating location, 
spread and symmetry of the pile of data, and the 
shapes of the probability density functions 
(Grace, 2015), and the number of humps (Wilks, 
2006).  

 

    Eq. 1 

Finally, the last arrangement was the 
analysis of trends of the temporal evolution of 
each buoy respect each other, dataset by 
dataset, it could be feasible to linearize them 

respect each other by lag correlation functions, 
(Chung and Power, 2017, and Gerhards, 
Schramm, and Schmid, 2019), that avows figure 
out how well relative humidity of each dataset 
correlates in time respect to other datasets, 
defined in Eq. 2,  

 

 Eq 2 

 
where: 

: mean value of the  dataset (  buoy). 
: mean value of the  dataset (  buoy). 
: length of the data set. 
: any value of  dataset. 
: any value of  dataset.   

 
If  values trends to zero, means that 

relative humidity between the pair of buoys 
parameterized is scattered randomly without any 
relationship. The ranges could increase until  = 
1, which means that datasets are dependent 
respect each other (Pickard and Emery, 2007). 

All these processes were implemented 
using Matlab 2009a student version, and the 
codes were performed or adapted to this project 
from the functions of the software themselves. 

 

3. RESULTS AND DISCUSSION:  
 
3.1 Time evolution of relative humidity in the 
Pacific Ocean around the Equatorial line.  

There should a relationship between 
temperature and moisture in the atmosphere of 
the tropical waters of the Pacific Ocean. It is 
known by the oceanographers that temperatures 
in this atmosphere have very small defined 
ranges as Relative Humidity does. In the 
Northeast of the Pacific Ocean, Relative Humidity 
fluctuates quasi harmonically inside the 64 % and 
92 % interval of range around the continuous 
average line along the time.  There would be 
appreciated an increment of Relative Humidity in 
some buoys in front of hot ENSO events (Wang 
and McPhaden, 2001), such in the 8º N 156º E 
and 8º N 165º E in 1997-98, as can be seen in 
figure 2, (a) and (b); and other lower peaks such 
2000, as can be seen in figure 3, (a) and (b), in 
the 2º N 156º E buoy in the year 1998, and in the 
2º N 165º E buoy in 1997, respectively. 

Observing buoys located in the Southeast 
of the Pacific Ocean, the harmonic oscillations 
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have a major period of oscillations, achieving 
periods of 5 years around the continuous average 
value in the 0º N of latitude, see figure 4 (a), (0º 
N 156º E). But Southern latitudes have not 
standard behavior, presenting some of them, 
occurrences up the mean average value for more 
than 10 years, as can be seen in figure 4 (b). (5º 
S 156º E), and ranges of Relative Humidity are 
slightly bigger than northern buoys. 

The time evolution of Relative Humidity in 
the Northwest of the Pacific Ocean almost 
oscillates harmonically with constant amplitudes 
around the average line, near the eastern 
surface. Abnormal oscillations are observed and, 
only in the 8º N 155º W, it is observed one 
wavelength up the time average line, 1997-98, 
and one oscillation below this line between 2013-
14 in the 5º N 140º W buoys, see figure 5 (a) and 
(b), respectively. 

In the Southwest of the Pacific Ocean, 
sinusoidal oscillations up and down the 
continuous average line are observed, but in the 
8º S latitudes, as it is appreciated in the 5º S 170º 
W and 8º S 125º W positions, respectively, see 
figure 6 (a) and (b). Nevertheless, exceptions 
occur; some buoys do not oscillate during few 
years since 1997 as 5º S 155º W and 5º S 110º 
W buoys do. Past this period, there is another 
long period, almost 10 years, where occurrences 
happen above the time average line, it means, 
oscillations happen up this line, as indicates 
figure 6 (c) and (d).  

There should an inverse or direct 
dependence of Relative Humidity with 
temperatures, depending on the location of the 
buoy, the reason why it will be recommended to 
correlate both variables. And also, it is seen that 
moisture is perturbed when an ENSO event is 
taking place. 

 
 3.2 Discrete Distribution Function of Relative 
humidity over the Pacific Ocean in the Equatorial 
line. 

It has been found a dependence on the 
occurrences of Relative Humidity respect colder 
or hotter periods in the Pacific Ocean around the 
Equatorial line. Besides, ranges are very similar 
in the east and the west sides of the grid. 
Observing annual histograms, it is seen that 
expected values for every buoy address to 80%, 
and extreme values do not exceed 60% in the 
lower limit and 94 % in the upper one. The 
shorter scale parameters of a probability density 
function of the observations are founded in the 
Northeast of the Pacific Ocean, see figure 7, (a) 
and (b); and the bigger ones in the Southwest 

side, see figure 8, (a) and (b). 

 This contrast is reflected by the increase 
of means values of Relative Humidity in the west 
of the Pacific Ocean. The histograms at the 5º N 
latitude, just in the 155º W, 140º W, and 125º W 
meridians, have Gaussians shapes, but no one 
histogram has Gaussians shapes, see figure 9, 
(a), (b), and (c); major peaks are located in the 
eastern part of the Ocean, and lower peaks are 
located in the western part, achieving values of 
Relative Humidity of 100%, as could be seen in 
figure 10 (2º S 125º W).   

By the seen in these histograms, it is 
possible to say that air temperature and relative 
humidity have a corresponding relationship in the 
area of the Pacific Ocean around the Equatorial 
line, and mean value increase in the west side of 
the network. 

 
3.3 Linearization of Relative Humidity over the 
Pacific Ocean in the Equatorial line. 

 
Linearization of annual Relative Humidity 

in the Pacific Ocean over the Equatorial line 
between each pair of buoys shows that there are 
not a couple of buoys that correlate with each 
other. Observing plots of lag correlations of 
buoys located in the East of this area of the 
ocean, i.e. 0º N 156º E and 2º N 147º E, and 0º N 
156º E and 2º N 165º E, see figure 11 (a), and 
(b), respectively; or buoys located in the west 
side, i.e. 0º N 125º W and 0º N 140º W, and 8º S 
180º W and 9º N 140º W, see figure 12, (a) and 
(b), respectively;  or buoys of the east and west 
of the Pacific Ocean, i.e. 0º N 156º E and 8º S 
180º W, and 2º N 147º E and 8º S 180ºW, see 
figure 13, (a) and (b), respectively, have around 
zero values along the time. It means that, every 
buoy has occurrences independently of each 
other; see figure 12, (a) and (b).  

All the occurrences of lag correlation 
functions of relative humidity near the Equatorial 
line are very close to the expected values. In 
spite of that, it is appreciated that some buoys 
are perturbed several times, modifying slightly 
their directions. This fact is observed in the lag 
correlation between 0º N 156º E and 2º N 147º E, 
in the years 1997, 2004, 2001, as it could be 
seen figure 11 (a); in the lag correlation between 
0º N 156º E and 2º N 165º E in 1997, 2002, 2006, 
and 2011, see figure 12 (b). 
 
4. FUTURE PREDICTIONS: 

 
Analysis of relative humidity in front of 

temperatures, as SST, Air T, upper temperatures 
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(Wang and McPhaden, 2001) would be able to 
achieve an interaction forward ENSO events. 

Taking short periods of time and subgrids 
(Weber and Mass, 2019) to linearize Relative 
Humidity, will allow focussing on variations of this 
parameter respect to ENSO events. 

   
5. CONCLUSIONS:  
 
 It has been seen that some amplitudes of 
oscillations of time series of Relative Humidity 
are constants, and trend to oscillate periodically. 
Other buoys oscillate with variable amplitudes but 
with values near the extreme values of the 
ranges of Relative Humidity. Values of Relative 
Humidity for all the buoys oscillate harmonically; 
so, there should be a dependence of their 
expected value. 

Occurrences of Relative Humidity oscillate 
in front of the time, but no one buoy synchronizes 
respect the others. These oscillations have small 
periods, especially in the Northern side of the 
Pacific Ocean, or large periods, especially in the 
Southern side of the ocean. Shapes of 
histograms are very similar, extreme values are 
characteristic of the side of the ocean, eastern or 
western, being bigger ranges near the American 
Continent. Even Relative Humidity of each buoy 
oscillates around 80%, no one buoy correlates 
with another buoy. 

It is recommendable to compare short 
periods of time series of Relative Humidity in 
front of ENSO events since Relative Humidity is 
suitable for these events. And, also, a method to 
predict ENSO events means lag correlation 
functions, there would be working with shorter 
periods (Subramanian, Juricke, Dueben, and 
Palmer, 2019). 
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Figure 2. Increment of Relative Humidity occurrences above time average line at a) 8º N 156º E, b) 
and pronounced at 8º N 165º E. 

 

Figure 3. Reduction of Relative Humidity occurrences below time average line at a) 2º N 156º E, b) 
and pronounced at 2º N 165º E. 
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Figure 4. Normal oscillation of Relative Humidity above and below time average line during 
long period from 1997 at a) 0º N 156º E, and at b) 5º S 156º E. 

 

Figure 5. Abnormal oscillation of Relative Humidity in the northwest of the Pacific Ocean 
around the Equatorial line, oscillating a) above, at 8º N 155º W, and b) below, at 5º N 140º W, the 
time average line. 

 

Figure 6. Sinusoidal oscillations of Relative Humidity in the southwest of the Pacific Ocean 
around the Equatorial line in normal conditions at a) 5º S 170º W, b) 8º S 125º W, and abnormal 
conditions at c) 5º S 155º W, and d) 5º S 110º W locations. 
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Figure 7. Discrete PDF of Relative Humidity in the northeast of the Pacific Ocean in the 
Equatorial line at a) 2º N 137º E, and b) 5º N 147º E. 

 

Figure 8. Discrete PDF of Relative Humidity in the southeast of the Pacific Ocean in the Equatorial 
line at a) 2º S 156º E, and b) 5º S 165º E. 

 

Figure 9. Gaussian shapes of Discrete PDF of Relative Humidity in the Pacific Ocean at the 
Equatorial line at a) 5º N 155º W, b) 5º N 125º W, and c) 5º N 140º W. 



Periódico Tchê Química.  ISSN 2179-0302. (2019); vol.16 (n°33) 
Downloaded from www.periodico.tchequimica.com 

  640 

 

Figure 10. Lower peaks of Discrete PDF of Relative Humidity in the Pacific Ocean at the Equatorial 
line at 2º S 125º W. 

 

Figure 11. Lag correlation functions of PDF of Relative Humidity in the east side of the Pacific Ocean 
at the Equatorial line between a) 0º N 156º E and 2º N 147º E, and b) 0º N 156º E and 2º N 165º E. 

 

Figure 12. Lag correlation functions of PDF of Relative Humidity in the west side of the Pacific Ocean 
at the Equatorial line between a) 0º N 125º W and 0º N 140º W, and b) 8º S 180º W and 9º N 140º W. 

 

Figure 13. Lag correlation functions of PDF of Relative Humidity between the east and west sides of 
the Pacific Ocean at the Equatorial line between a) 0º N 156º E and 8º S 180º W, and b) 2º N 147º E 

and 8º S 180º W. 


